Hadoop序列化

1.为什么需要序列化?

一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。

2.什么是序列化

1.序列化:就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便与存储(持久化)和网络传输。
2.反序列化:就是将收到字节序列(或其他数据传输协议)或者是硬盘的持久化数据,转换成内存中的对象。

3.为什么hadoop不用java的序列化

因为Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以hadoop就开发了一套自己的序列化框架!!

4.Hadoop序列化特点

1.紧凑 :高效使用存储空间
2.快速:读写数据的额外开销小。
3.可扩展:随着通信协议的升级而可升级
4.互操作:支持多语言的交互

5.常用的Hadoop数据序列化类型

Java类型Hadoop Writable类型
booleanBooleanWritable
byteByteWritable
intIntWritable
floatFloatWritable
longLongWritable
doubleDoubleWritable
stringText
mapMapWritable
arrayArrayWritable

6.自定义bean对象实现序列化接口

1.必须实现Writable接口
2.反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {
	super();
}

3.重写序列化方法

@Override
public void write(DataOutput out) throws IOException {
	out.writeLong(upFlow);
	out.writeLong(downFlow);
	out.writeLong(sumFlow);
}

4.重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {
	upFlow = in.readLong();
	downFlow = in.readLong();
	sumFlow = in.readLong();
}

5.注意反序列化的顺序和序列化的顺序完全一致
6.要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用
7.如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序

@Override
public int compareTo(FlowBean o) {
	// 倒序排列,从大到小
	return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

版权声明:本博客为记录本人自学感悟,转载需注明出处!
https://me.csdn.net/qq_39657909

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页