spark submit参数介绍

 

你可以通过spark-submit --help或者spark-shell --help来查看这些参数。

使用格式: 

./bin/spark-submit \

  --class <main-class> \

  --master <master-url> \

  --deploy-mode <deploy-mode> \

  --conf <key>=<value> \

  ... # other options

  <application-jar> \

  [application-arguments]

1.spark作业配置的三种方式

  1. 读取指定配置文件,默认为conf/spark-defaults.conf。
  2. 在程序中的SparkConf中指定,如conf.setAppName(“myspark”)。
  3. spark-submit中使用参数。
    这三种方式的优先级为SparkConf>spark-submit>配置文件。可以在spark-submit中使用–verbos参数查看起作用的配置来自上述哪种方式。

2.spark-submit参数说明

使用spark-submit提交spark作业的时候有许多参数可供我们选择,这些参数有的用于作业优化,有的用于实现某些功能,所有的参数列举如下:

参数说明
–master集群的master地址。如:spark://host:port,mesos://host:port,
yarn-client,yarn-cluster,local[k]本地以k个worker线程执行,
k一般为cpu的内核数,local[*]以尽可能多的线程数执行。
–deploy-modedriver运行的模式,client或者cluster模式,默认为client
–class应用程序的主类(用于Java或者Scala应用)
–name应用程序的名称
–jars作业执行过程中使用到的其他jar,可以使用逗号分隔添加多个。可以使用如下方式添加:
file:指定http文件服务器的地址,每个executor都从这个地址下载。
hdfs,http,https,ftp:从以上协议指定的路径下载。
local:直接从当前的worker节点下载。
–packages从maven添加作业执行过程中使用到的包,查找顺序先本地仓库再远程仓库。
可以添加多个,每个的格式为:groupId:artifactId:version
–exclude-packages需要排除的包,可以为多个,使用逗号分隔。
–repositories远程仓库。可以添加多个,逗号分隔。
–py-files逗号分隔的”.zip”,”.egg”或者“.py”文件,这些文件放在python app的PYTHONPATH下面
–files逗号分隔的文件列表,这些文件放在每个executor的工作目录下。
–conf其他额外的spark配置属性。
–properties-file指向一个配置文件,通过这个文件可以加载额外的配置。
如果没有则会查找conf/spark-defaults.conf
–driver-memorydriver节点的内存大小。如2G,默认为1024M。
–driver-java-options作用于driver的额外java配置项。
–driver-library-path作用于driver的外部lib包。
–driver-class-path作用于driver的额外类路径,使用–jar时会自动添加路径。
–executor-memory每个excutor的执行内存。
–proxy-user提交作业的模拟用户。是hadoop中的一种安全机制,具体可以参考:
http://dongxicheng.org/mapreduce-nextgen/hadoop-secure-impersonation/
–verbose打印debug信息。
–version打印当前spark的版本。
–driver-coresdriver的内核数,默认为1。(仅用于spark standalone集群中)
–superivsedriver失败时重启 (仅用于spark standalone或者mesos集群中)
–killkill指定的driver (仅用于spark standalone或者mesos集群中)
–total-executor-cores给所有executor的所有内核数。(仅用于spark standalone或者mesos集群中)
–executor-cores分配给每个executor的内核数。(仅用于spark standalone或者yarn集群中)
–driver-coresdriver的内核数。(仅yarn)
–queue作业执行的队列。(仅yarn)
–num-executorsexecutor的数量。(仅yarn)
–archives需要添加到executor执行目录下的归档文件列表,逗号分隔。(仅yarn)
— principal运行于secure hdfs时用于登录到KDC的principal。(仅yarn)
–keytab包含keytab文件的全路径。(仅yarn)

3、详细讲解

在公司使用最多的是spark on yarn模式,下面主要讲spark on yarn

资源参数调优

所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使用的效率,从而提升Spark作业的执行性能。

以下参数就是Spark中主要的资源参数,每个参数都对应着作业运行原理中的某个部分,我们同时也给出了一个调优的参考值。

 

num-executors

 

参数说明:

该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在

集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的

Spark作业的运行速度是非常慢的。

参数调优建议:

每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;

设置的太多的话,大部分队列可能无法给予充分的资源。

 

executor-memory

参数说明:

该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。

参数调优建议:

每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列

的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,

那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。

 

executor-cores

参数说明:

该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个

task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。

参数调优建议:

Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的

Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过

队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。

 

driver-memory

参数说明:

该参数用于设置Driver进程的内存。

参数调优建议:

Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,

那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

 

spark.default.parallelism

参数说明:

该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。

参数调优建议:

Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量

来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会

导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的

Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍

较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

 

spark.storage.memoryFraction

参数说明:

该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择

的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。

参数调优建议:

如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只

能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现

作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

 

spark.shuffle.memoryFraction

参数说明:

该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor

默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时

就会极大地降低性能。

参数调优建议:

如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多

时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低

这个参数的值。

 

资源参数的调优,没有一个固定的值,需要根据自己的实际情况(包括Spark作业中的shuffle操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况),

合理地设置上述参数。

 

资源参数参考示例

以下是一份spark-submit命令的示例,大家可以参考一下,并根据自己的实际情况进行调节:

 

./bin/spark-submit \

  --master yarn-cluster \

  --num-executors 100 \

  --executor-memory 6G \

  --executor-cores 4 \

  --driver-memory 1G \

  --conf spark.default.parallelism=1000 \

  --conf spark.storage.memoryFraction=0.5 \

  --conf spark.shuffle.memoryFraction=0.3 \

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页